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conceived can largely, or only roughly, be applied to 
the actual structure. This holds, of course, for any 
other approach to the question of bond-length correc- 
tion. 

In the succeeding paper we shall develop dynamical 
models for diatomic and triatomic molecules. 
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The bond-length correction which is needed to correct for the effects of thermal motion is derived for 
diatomic and triatomic molecules. We treat the molecules as rigid-body oscillators and assume that the 
correlation tensor S is symmetric when the origin of the librations is at the centre of gravity. For di- 
atomic molecules consisting of atoms of different masses and for linear triatomic molecules a simple 
solution is obtained. For diatomic molecules consisting of equal atoms and for angular triatomic mol- 
ecules one can determine the correction only by introducing an unknown lattice-dynamical parameter. 
The value of this parameter can be assessed to a certain extent and can be determined from the vibra- 
tion tensors of the atoms of asymmetric diatomic and linear triatomic molecules. Thus one obtains an 
experimental distribution of the lattice-dynamical parameter which is also likely to hold for symmetric 
diatomic and angular triatomic molecules. The corrections are calculated for 11 water molecules for 
which very accurate structural data are available. 

1. Introduction 

The thermal bond-length correction for diatomic and 
triatomic molecules can, in principle, be determined 
from the model of rigid-body motion (to a very good 
approximation). If one atom in the molecule is much 
heavier than the others, the riding model (of. Busing & 
Levy, 1964) also provides an essentially correct value 
of the correction. However, for many diatomic and 
triatomic molecules the assumptions made in the riding 
model do not hold. Even for the H20 molecule the 
riding model does not seem to be appropriate and for 
the D20 molecule it is certainly inappropriate. 

If one wants to determine the correction by applying 
the rigid-body model the question arises to what extent 
the validity of this model is restricted by the internal 
modes of the molecule. For diatomic molecules there is 
only one internal mode in the direction of the bond. 
Since this mode does not enter into the calculation of 
the correction, the rigid-body model holds exactly for 
evaluating the correction for diatomic molecules. With 
triatomic molecules, however, the components of the 
atomic vibration tensors U, which are determined ex- 
perimentally, contain contributions of the internal 

modes. For light atoms these contributions attain their 
maximum. In a preceding paper (Scheringer, 1972a) we 
showed that, even for hydrogen atoms, they do not 
amount to more than about 10% of the total mean- 
square amplitudes. However, if one evaluates the com- 
ponents of the libration tensor L of the molecule from 
the experimentally determined components U ~k the 
actual error made is even smaller. The reason is that  
internal and external modes often have nearly the same 
mean-square amplitudes so that the libration tensor 
also contains the internal modes to a large extent. We 
shall discuss these relations in detail for the water mol- 
ecule. 

If the rigid-body model is applied to diatomic and 
triatomic molecules further investigation will then 
show that it is expedient to divide the molecules into 
two classes. For the molecules of the first class the 
correction can be determined directly from the vibra- 
tion tensors U of the atoms. It is to this class that  the 
diatomic molecules with unequal masses and the linear 
triatomic molecules belong. For the molecules of the 
second class the thermal rigid-body parameters cannot 
be fully determined from X-ray or]and neutron data, 
i.e. the components U ik of the atoms are not sufficient 
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to determine uniquely the libration tensor L, which is 
needed to calculate the correction. It is to this second 
class that the diatomic molecules with equal masses 
and the angular triatomic molecules belong. We shall 
treat the molecules of the second class in the following 
way: we introduce an unknown lattice-dynamical par- 
ameter and formulate the correction in terms of it. 
This parameter can be assessed to a certain extent by 
virtue of its definition and from experimental evidence. 
Furthermore, it can be determined from the vibration 
tensors U of the molecules of the first class. If one cal- 
culates the lattice-dynamical parameter from various 
structures one obtains an experimentally established 
distribution of this parameter. The mean value of this 
distribution can - with some caution - be applied to 
the molecules of the second class. The correction for 
these molecules thus remains uncertain within certain 
limits but in many cases it is more accurate than the 
correction which one would obtain with the riding 
model. 

In this paper we derive the equations for the bond- 
length correction of diatomic and triatomic molecules. 
We shall not discuss the case of the asymmetric angular 
triatomic molecule since the formulae become too 
cumbersome and the rare occurrence of this case in 
crystals does not warrant its explicit treatment. Fur- 
thermore, we calculate the corrections for 11 water 
molecules for which very accurate structural data, ob- 
tained by neutron diffraction, are available. 

2. The diatomic molecule with unequal masses 

We consider the molecule to be a rigid-body oscillator 
and choose the centre of gravity of the molecule as 
origin for describing the librations. We assume that the 
rigid-body correlation tensor S is symmetric for this 
origin, i.e. S = S  r. This assumption has proved to be 
nearly true for several molecules and thus does not 
seem to imply a severe loss of generality. We call our 
model the 'centre-of-gravity' model, hereafter abbre- 
viated to COG model. In order to simplify description 
in the following we choose a Cartesian coordinate sys- 
tem with the z axis pointing in the direction of the bond. 
The two atoms have the coordinates z, und Zs, the x 
and y coordinates are zero. Thus the distance between 
the two atoms is d=  IZr--Z~[ and the correction term, 
w z = trace (Ar~) [equation (3.6) of Scheringer, (1972c) - 
hereafter referred to as SCHE (3.6)] is equal to 

w 2 = d 2 ( L H  + LEE), (2.1) 

c f  SCHE (4.5). Hence we have to determine L~ and 
L22 from the components U¢ k and U~ k. From SCHE 
(4.2) we obtain in our special coordinate system 

1 1 _  T l l  U,  - + z ~ L 2 z + 2 z r S ~ ,  (2.2a) 

U 22 __ T 2 2  ..{_ Z 2  L n  - 2zrS~ (2.2b) 

Similar equations hold for the atom s. There are 6 
components of TLS in the equations (2.2a) and (2.2b) 

but we have only 4 components, U[ g and U~ ~, to deter- 
mine them. Now we take advantage of our assumption 
that the tensor S, referred to the centre of gravity, is 
symmetric, i.e. ~ 2 $2 = $1. If we form the sums U) t + U, 22 
the parameter S~ =S~ cancels out and we obtain 

22 11 U 2 2  U~t+U, - U r  - 
Lll + L22 - 2 2 (2.3) 

Z s ~ Z r 

2 2 Equation (2.3) yields a reasonable result only if z~ --/: zr, 
i.e. if the centre of gravity is not at the geometrical 
centre of the molecule, in other words if the masses mr 
and rn~ are not equal. In the following we choose 
mr > m~. Let m, + m~ = M; then 

2 2 2 2 2 d ms d m,. 
Z r = 2 (2.4) 

M 2  , z ~ -  M 2  , 

and we obtain with equations (2.1), (2.3) and (2.4) 

w-~= (u 2 + Us ~'-- u, ~1- u, ~') mr+ ms. 
m r - -  m s 

(2.5) 

Neglecting our special coordinate system and defining 
w, 2 (w~) by analogy to w 2 of SCHE (3.6), we can substi- 
tute Ar~ by U,(U~) and write 

W -'-~ = (W---}--- tf--~) - m r s - +  D-ls . ( 2 . 6 )  
mr - n'ts 

Hence the COG model gives a correction which can 
be obtained directly from that of the riding model, 
72 ,2 by multiplication with a mass factor. For an 14 s - - B r ,  

OH-  ion this factor is 17/15= 1.I3, a value which will 
scarcely be significant on an absolute scale. But, in 
principle, we believe the COG model to be the more 
realistic approach for non-bonded diatomic molecules. 

3. The diatomic molecule with equal masses 

We now consider the case mr = m~ for which our equa- 
tions break down. With mr=m~ the COG model de- 
mands Ur=Us. Hence there are only two parameters, 
U~ 1 and U~ 2, left and these are not sufficient to  deter- 
mine Lit and L22 in equations (2.2a) and (2.2b). w 2 in 

,2 be- equation (2.6) remains undetermined since w~ - ~ r  
comes zero and the mass factor infinitely large. We get 
around this difficulty as follows: we introduce a lattice- 
dynamical parameter into the equations for the correc- 
tion which describes the ratio of librational to trans- 
lational motions of the molecule. This parameter can 
be determined from experimental data in the case 
mr > m~. The values of the parameter gained in this way 
will then be transferred to the case mr = m~. 

Let r, be the translational part and ~or be the libra- 
tional part of the lattice vibrations for the atom r, ex- 
pressed as mean-square amplitudes with rr+~or= 1. 
Then we have in agreement with equations (2.2a) and 
(2.2b) 

Tl1+ 22 _ [T711 T =~rt~r +U,22), 
z~(L~,+L~I)=~r(U~,+U~/). (3.1) 

Similar equations hold for the atom s. An explicit ex- 
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pression for the ratio 0,/zr can be gained from the lat- 
tice-dynamical expression for the components Uu as 
given by Scheringer (1972b) equation (4). This equation 
refers to a single atom, but here we have to apply it to 
the whole molecule since we consider only the external 
modes of the molecule. Hence we have to substitute 
the masses m, and ms by the total mass of the molecule, 
M, and the moment of inertia, L With the COG model 
we refer the moment of inertia to the centre of gravity 
of the molecule. Then we obtain the mass factor I/z z 
instead of mr for the librational modes of the molecule, 
and M for the translational modes. With equation (4) 
of Scheringer (1972b) we then obtain 

Qr ( U I I  + V22)rot Mz2~ { }rot 
"g'r (Url l  ..~ 22 ' , Ur )trans I {  }trans (3 .2 )  

where 

£(qj )  
{ } = - Xq7 [e,(,'lqj)et(rlqj) + e2(rJqj)e (rlqj)l, 

in our molecular coordinate system. Similar equations 
apply for the atom s. The notation is the same as that 
used in equation (4) of Scheringer (1972b) and in 
SCHE (2.2). The subscripts 'rot' and 'trans' refer to 
rotational and translational modes respectively. For 
the external modes of the molecule the high tempera- 
ture approximation E(Rj)= k~T  is nearly valid so that 
the expressions { }rot and { }trans in equation (3.2) are 
essentially proportional to averages (1 2 /O~rot) and 
(1/OJt2rans) taken over all modes qj. We define the ratio 
of the curly-bracket expressions in equation (3.2) to be 

1 
{ }rot/{ }trans ~ W ~  /,]2 ' (3.3) 

which is approximately equal to (COtZr, ns)/(Og~ot). Hence 

rl ~-- ( (OO2rot)l Q.O2trans))'12 ~ Q.Orot)/Q.Otrans) 

essentially describes the ratio of a mean rotational to a 
mean translational frequency of the lattice modes. 
Since rotations (librations) are usually more hindered 
than translations the rotational modes will have the 
higher frequencies. Thus we expect r/ to have values 
between 1 and 3. These figures correspond to Raman 
and infrared frequencies which are measured on mol- 
ecular crystals and assigned to the external modes of 
the molecules. W=r /=  1 corresponds to the state of 
uncorrelated motion. A proof of this statement will be 
given in the Appendix. W or r/ respectively is our 
'lattice-dynamical parameter'. In the following equa- 
tions it will be easier to use W; however, r/, being more 
or less a frequency ratio, is the more illustrative quan- 
tity so that we prefer to use it in the general discussion. 

Using the parameter W, defined in equation (3.3), 
we now obtain from equation (3.2) 

Or Mz~ - - - W =  ms W, (3.4) 
Zr I m r 

and thus 

ms W 
mr 1 

0 , =  , z r =  . ( 3 . 5 )  
ms W + I  ms W + I  
m r  mr  

We obtain the corresponding equations for O~ and rs 
by exchanging the subscripts r and s. Using equations 
(2.1), (2.4) and (3.1) we find the correction term to be 

w--7=Qsw: ( m r + m s )  2 
\ mr ' (3.6) 

and, by using equation (3.5) applied to the atom s, 

rva = (mr + ms) 2 Ww2s 
mr(mr W +  ms) " (3.7) 

Thus the correction term w z is represented as a function 
of the masses mr and ms, of the parameter W, and of 
the mean-square amplitude ~ which can be calculated 
from the vibration tensor Us. In deriving (3.7) we first 
encounter Qs as an unknown parameter [equations (3.5) 
and (3.6)] because Qs is immediately related to the libra- 
tion tensor L, ef. equation (3.1). However, Qs is less 
universal than W (r/) since Qs is referred to a distinct 
atom and also depends on the type of molecule con- 
sidered, ef. §§ 4 and 5 below. These limitations do not 
hold for W (r/) and thus we prefer to express our final 
equations in terms of W(v/). 

We now discuss how W can be determined from the 
vibration tensors U in the case mr > ms. Since the trans- 
lations of the atoms r and s must be equal for rigid-body 
motions we have 

wZ, rr=w~vs . (3.8) 

ws/wr = 6 and obtain We define a quantity 2 2 

mr W + I  

8 -  z r _  ms (3.9) 
zs ms W+ 1 

mr 

from equations (3.8) and (3.5). 
Equation (3.9) gives 

8 - 1  
W= 

mr ms 3 " (3.10) 
ms mr 

From equation (3.5), applied to the atom s, and equa- 
tion (3.10) we finally obtain 

( f i -  1)m~ 
0s= 6(mZ_m~ ) . (3.11) 

For mr > ms we generally will have fi > 1 so that in this 
case W and Qs can be determined from 8, i.e. from the 
tensors Ur and Us. For mr=ms we have fi= 1 and W 
and Os remain undetermined in equations (3.10) and 

A C 28A - 10 
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(3.11) respectively. Similarly, equation (3.9) shows that, 
with 3 =  1, I4/may have any value. If we insert 3 =  

2 2 w~/w, in equation (3.11) and further use equation (3.6) 
we obtain equation (2.6), which shows that the devel- 
opment made in this section is consistent with our 
previous results. 

We have calculated the values of 3, W, r /and ~o~ with 
5 structures. The values obtained are based on the 
structural data for OH groups as reported in the litera- 
ture. For  the O H -  ion we have mr= 16 and ms= 1. 
The results of our calculation and the names of the 
authors who carried out the structure determinations 
are given in Table 1. To a fair approximation r/is equal 
to 2; of course, the value of r/varies for the different 
compounds. Using Zigan & Rothbauer 's (1967) value 
for U u - f i n  in their notation - for the oxygen atom 
we obtain r/= 1.07, which is only about half the ex- 
pected value. We conclude that these authors deter- 
mined a value o f f l  u which was too small, fltt is only 
as large as its own standard deviation. If we use the 
double and threefold value of fltt the r/ values for 
Mg(OH),  fit well into the series of the r/values for the 
other compounds in Table I. The results in Table 1 show 
that the mean value of W is about 0.25 (i/= 2-0). Cer- 
tainly each structure will be different in detail but the 
figures in Table 1 show that the ratio of rotational to 
translational frequencies in the mean over-all lattice 
modes is fairly constant. This is our justification for 
transferring the value of W(q) to the case mr=m~. 
Certainly it is desirable to establish a broader exper- 
imental basis by calculating further values of W(r/). 
Unfortunately we could not find any more structures 
containing diatomic molecules or ions for which the 
vibration tensors were determined. Furthermore, the 
condition m~/m~ > 4 should be fulfilled with these mol- 
ecules since with smaller values of  this ratio the exper- 
imental accuracy will usually not be sufficient to deter- 
mine a significant value of W(r/). [As can be seen from 
equation (3.9) the value of 6 will be smaller than 2 with 
m,/m~<4 and W=0.25. Then equation (3.10) will give 
unreliable results for W(rl) if one takes into account 
that the experimental accuracy in determining 6 is 
limited.] 

If one assumes a fixed value for the lattice-dynamical 
parameter W the correction for the diatomic molecule 
with atoms of equal masses (m, = m~) can be calculated 
from equation (3.7). Assuming r/=2, W=0.25 we ob- 
tain Q~=0.20 and wZ=0.80w]. For  the COG model the 

m 

condition U,=U~ or w~ =w~ must be fulfilled. This 
condition can be used in order to examine whether or 
not the COG model is appropriate and whether or not 
the tensors U, and Us are determined with sufficient 
accuracy. 

4. The linear triatomic molecule 

For this type of molecule the bond-length correction 
can always be calculated. The procedure is similar to 
that for the diatomic molecule with unequal masses be- 
cause the thermal rigid-body parameters are the same 
and the vibration tensors U are always different for the 
central atom and one outer atom. The equations (2.1), 
(2.2) and (2.3) can thus be applied to the linear tria- 
tomic molecule whereas equation (2.4) must be modified 
according to the masses of the atoms in the molecule. 
In the following we use different masses mr, m~ and nh 
of the atoms; the subscript t denotes the central atom. 
We derive the correction for the distance d~r between 
the atoms s and t. The corrections w2/2d for the two 
other distances dr, and d,s are then proportional to the 
corresponding distances, i.e. 

2 W2t 2 Wrs Wst 
d~- = - 2  . . . . .  z-" (4.1) d,t d~t 

This follows from equation (2.1). The correction is ob- 
tained from equation (2.3) if we replace the atom r by 
the atom t. Using m~ + m~ + nh = M we obtain for the z 
coordinates, referred to the centre of gravity, 

zZ ~ = (m,4, + mr6s) z (m,d~t - m,4,)  z 
M 2 - - ,  z[= M z - - .  (4.2) 

With equations (2.3) and (4.2) we obtain 

Thus the correction term consists of two factors" the 
riding-model term (w~ -w~)  and a mass factor, the ex- 
pression in curly brackets. For  the centrosymmetric 
molecule we have dr, = d~t, m, = ms and the mass factor is 
unity; i.e. equation (4.3) reduces to the correction ob- 
tained by using the riding model. For dr, --> 0, mt -+ 0 
the triatomic molecule reduces to the diatomic one, 
and equation (4.3) reduces to equation (2.6). Equations 
(4.2) and (4.3) remain true when the indices s and r are 

Table 1. Values of  3, W, 1I, and Q~ for some compounds 

For explanation see text. 

Compound ~ W r/ 0s 
AIO(OH) 4.25 0-207 2.20 0.77 
Ca(OH)2 5" 79 0-306 1" 81 0-83 
Mg(OH)z 14-14 0"869 1 "07 0.93 
Mg(OH)2 7-07 0.390 1 "60 0-86 
Mg(OH), 4"71 0"236 2.06 0"79 
Muscovite 3"69 0.168 2.44 0-73 
MnO(OH) 3"41 0-153 2"56 0-71 

Reference 
Busing & Levy (1958) 
Busing & Levy (1957) 
Zigan & Rothbauer (1967) 
Zigan & Rothbauer (1967). 2]~11(0) 
Zigan & Rothbauer (1967). 3,811(0) 
Rothbauer (1971) 
Dachs (1963). Isotropic thermal parameters. 
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exchanged. For an actual determination of the correc- 
tion it is suggested that the correction with both the 
pairs of atoms r, t and s, t be calculated and the con- 
sistency of the results checked with equation (4.1). 

The linear triatomic molecule also offers the chance 
to determine values of the lattice-dynamical parameter 
W. We abbreviate the mass factor of equation (3.2) G =  
Mz~/I, where M = m , + m ~ + m t  a n d / i s  the moment of 
inertia about the x or y axis of the molecule, referred to 
the centre of gravity. For the centrosymmetric molecule 

Then 
G = (2m, + m,)/2m,. 

Q,=GW/(GW+ I) . 

which could also arise from rigid-body librations. 
Thus, if the components of the libration tensor are cal- 
culated from the experimentally determined compo- 
nents U~ k and U~ k, the libration tensor contains the 
contributions of the bending modes to a large extent. 
Hence, to a very good approximation, the internal 
modes of the symmetric molecule need not be treated 
explicitly. For highly asymmetric linear molecules the 
contributions of the bending modes will be accounted 
for only poorly by the libration tensor. In this case an 
explicit treatment of the internal modes seems to be 
appropriate since neglecting these modes may result 
in errors of about 5 to 10% of the calculated correc- 
tion, cf  Scheringer (1972a). 

The correction, expressed in terms of Q~, is then given 
by 

2 __ 2 2 2 Wst - dstQ~ws/Zs 
- -  M 2 

=O~w~{(l+d,.,d2il)m,+m, } . (4.4) 

Let the expression in curly brackets of equation (4.3) 
be denoted by c~ and the square of the curly brackets of 
equation (4.4) by fl, then, from equations (4.3) and 
(4.4), we obtain 

w =  - w ,  
G[(/%~ -1-1)w~ z + w~] " (4.5) 

For the centrosymmetrical molecule equation (4.5) re- 
duces because c~=/3= 1. 

A numerical value of W is obtained from the struc- 
tural data of the CS2 molecule which were gained by 
Baenziger & Duax (1968) at 148°K. From the values 
reported for the vibration tensors of the carbon and 
sulphur atoms we calculate W=0.316, r/=1.78 and 
0~ =0.27. Thus the values of W and r/fit well into the 
series given in Table 1 whereas Qs for CS2 differs from 
0~ for O H -  because of the different distribution of 
masses in the two types of molecules. Unfortunately, 
we could not find other examples of linear triatomic 
molecules or ions which were well enough refined. The 
HF~- ion (McGaw & Ibers, 1963) does not behave as a 
rigid body since the motions of the hydrogen atom 
perpendicular to the bond are larger than those of the 
fluorine atoms. Several structures containing C N O - ,  
O C N - ,  CNS- ,  SCN- ,  and CN~- ions have been deter- 
mined (Wyckoff, 1964), but with low accuracy and 
without anisotropic temperature factors. 

In our discussion we have so far neglected the intern- 
al modes of the molecule. The two stretching modes 
do not contribute to the correction since their ampli- 
tudes are in the direction of the bonds, of. Herzberg 
(1956, p. 164). The bending modes, however, will gen- 
erally contribute to the vibrations of the atoms per- 
pendicular to the bonds and thus to the correction. For 
the symmetric linear molecule the amplitudes of the 
two outer atoms will produce mean-square amplitudes 

5. The symmetric angular triatomie molecule 

This type of molecule must also be treated by using a 
lattice-dynamical parameter. This parameter will be 
applied in a manner different to that of the diatomic 
molecule because of the different geometry in the two 
types of molecules. But r/will again represent more or 
less a ratio of a mean rotational to a mean translation 
lattice frequency. For the COG model we again assume 
that the correlation tensor S, referred to the centre of 
gravity of the molecule, is symmetric. 

In order to simplify description we choose a Carte- 
sian coordinate system with the origin at the centre of 
gravity of the molecule. The z axis is perpendicular to 
the plane of the molecule and the y axis bisects the 
angle at the central atom. The mass of the central atom 
is mt and the two outer atoms have masses m~=ms. 
Furthermore, 2m~ + mt = M. The uncorrected distances 
between the atoms are d,t = dst. The angle at the central 
atom is 2~0, see Fig. 1. The symmetry of the molecule 
in this coordinate system is m2m (we use orthorhombic 
Hermann-Mauguin symbols referred to the Cartesian 
coordinate system of the molecule). Possible site sym- 
metries are m2m, m l l ,  l lm,  and 121. The following 
relations hold for the coordinates of the atoms, of. 
Fig. 1: 

xr=-x ,~ ,  x t = 0 ,  xs=dstsin~0, 

m t  
Yr =Ys, Y~= -ds t  ~ cos ~0, 

yt=d~ t 2m, ---M-- cos ~o, zr = z ~ = z t = 0 .  (5.1) 

Using SCHE (3.6), SCHE (4.5), and equation (5.1) we 
obtain for the correction term 

w~t = d~t{Ln cos 2 ~0 nt- L 2 2  sin 2 ~0 +L33 

-2xs(ys-y , )L12) .  (5.2) 

The corresponding equation is valid if one replaces the 
subscript s by r whereby the Lx2 term changes its sign. 
The components L~k of equation (5.2) now have to be 
determined from the components U~ k, U] k, U~ k. From 

A C 28A - 10" 
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SCHE (4.2) we obtain the following relations, valid in 
our Cartesian coordinate system" 

U n T n + ' 2 L  - 2 y S ~  P" 33 (5.3a) 

U 22 = Z 2 z  + x 2 L 3 3  - -  2xS~,  (5.3b) 

U 33 = T 33 +yZL H + x2L22 - 2xyLt2 
+ 2yS 3 -  2xS~ . (5.3c) 

For site symmetries m2m, m 11, and 121 we have L~z = 
S ] = S ~ = 0 .  For  the COG model we assume S ] = S ~  
and S ] = S I .  From equations (5.1), (5.38) and (5.3b) 
we obtain 

Laa= U2z+ U2~z-2u2z U~22- U'22 (5.4) 
2x z ' S ]=S3z -  4xs ' 

from equation (5.3c) 

u ? -  u ,  ~ + u ~ ' -  u~ ~ 
Llz = - , (5.5) 

4xsys 

and from equations (5.3a) and (5.4) 

s ~ = s ~ = -  u p -  up  
2(ys -y , )  

/-]'22 __ '~/-122 
U 2 2 +  vs " ' ~  t Ys+Y, 

+ . - -  (5.6) 
2x, 2 

We cannot, however, determine Ln and L22 from equa- 
tion (5.3c) and so have to introduce a lattice-dynamical 
parameter. For the atom t we write 

hence 
U33 = (z -t + ~ot + 2o-t) U 33, 

r, + Q~ = 1 - 2a t .  

(5.7) 

Observing equation (5.1) we now obtain from equation 
(5.3c) 

ztU 33=T 33, QtU33=yZ tLl l  , crtU33=ytS3. (5.8) 

By analogy with equations (3.2) and (3.3), and by using 
equation (5.1), we obtain 

Qe _ My~ W= 2ms W ,  (5.9) 
zt Ix mt 

where I~ is the moment of inertia about the x axis. 
Then 

2m~ (1 - 2at) W 
rnt (5.10) 

~t = 2ms W+ 1 
mt 

The value of W is about 0.25, cf. § 3. With equation 
(5.8) we obtain - 3 33 a t - y , S I / U ,  , where S~ is determined 
from equation (5.6). Then Q, is determined from equa- 

tion (5.10) and we obtain from equation (5.8) L n =  
QtU33/y~. With the known values of Lat, S 3 and Qt we 
can now solve equation (5.3c) for L22 and obtain 

1 /.U 83+ U 83 U33 U 22- Ur 22 
L = =  x}- ~ 2 2 

33 2 - - 2  U l l  -~ rUt  (YsYt - 1)+ Usll-  
U~ 2 + U 22- 2Ut 22 _y~)]  

- 2 x ~  (Y~ " 
(5.11) 

Now all terms are determined which are needed for the 
correction according to equation (5.2). Applying equa- 
tion (5.1) to the equations above we replace the co- 
ordinates of the atoms by the distance dst, the angle ~0 
and the masses ms and mt and define an auxiliary 
quantity 

Q'= rnsW+m,/2 ==-/~" (5.12) 

Then, after rearranging all terms, we finally obtain 

33 U 3 3  22 2 2 _  
2 =  + w~, (/.z-1)U~ 3+ U, + U, +U~ 2Ut 22 

2 2 sin 2 (p 

M u, + u~') 
- -  U s - -  + 2~(u~?  ~ ~, 

fU~ 1 -  U ~ ' -  (U22 + U22- 2U2Z) ( m , -  2ms) + 
/ 2 M 

2ms I. (5.13) 

,2 is now represented as a func- The correction term W sr 
tion of the angle ~0, of the masses ms and mr, of the vi- 
bration tensors U,, Us, U, and of the lattice-dynamical 
parameter W, which is contained in the quantity /z. 
The first 3 terms on the right-hand side of equation 
(5.13) give the main contribution to the correction, 
they arise - only in total - from Ln, L22 and L33. The 
4th term arises from Lt2 and generally is small. The 
final term is due to $31. It is small in general but was 
observed to amount to about a quarter of the total 
correction in a few cases. If we exchange the subscripts 

it 

o 

m r 

> 

m S 

Fig. 1. Notation used in the Cartesian coordinate system of the 
molecule. 
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r and s in equation (5.13) we obtain the expression for 
w,Zt whereby the L12 term changes its sign. 

If we put rp = 90 ° equation (5.13) reduces to the cor- 
rection for the linear symmetric molecule, the x axis 
being the molecular axis, and thus Qt = W= 0. If we put 
(0 = 0  °, S~ =0,  mr > 2ms and eliminate the lattice-dyna- 
mical parameter W in ¢,, as discussed with the asym- 
metric diatomic molecule, equation (5.13) reduces to 
the correction term for the diatomic molecule with 
masses mt and 2ms where the y axis is the molecular 
axis. This shows that the development made in this 
section is in agreement with our previous results ob- 
tained in §§ 4 and 2. 

For the COG model three conditions must be ful- 
filled which one can use to examine whether or not the 
COG model can be applied and whether or not the exper- 
imentally determined components U ~k are sufficiently 
accurate. The conditions are 

(1) U~I= Us ~1, (5.14a) 

(2) (U 2z+ Uzz)_>2Ut 22, (5.14b) 

(3) a,/rl/~tQ~< 1, a , < 0 . 2 5 ,  (5.14c) 

where the components U" are referred to the Cartesian 
coordinate system of the molecule. The conditions (2) 
and (3) are not very stringent however. The condition 
(1) is more suitable for examining the applicability of 
the COG model. For the site symmetries m2m, m l 1 
and 121 we further have L~2=0, $32=0, Ur2Z-- U,22, 
U,33= U] 3. 

In the program that we have written for the num- 
erical calculation of the correction the components 
fltk, which are usually reported in the literature, are 
first transformed to components U ~k in/~2 referred to 
a fixed Cartesian reference system. With a second trans- 
formation the U ~k are calculated in the coordinate sys- 
tem of the particular molecule. Then w~t and w,Zt of 
equation (5.13) and the actual corrections are calcu- 
lated. The three conditions (5.14) are all examined. No 
matter what the result for condition (1) will be, it is 
regarded as being fulfilled within the limits of exper- 
imental error, i.e. in equation (5.13) U~ ~ is replaced by 
the average of  2 x (U~t+ U~ ~) so as to use two equivalent 
experimental data. Furthermore, the corrections for 
the riding model and for uncorrelated motion are cal- 
culated. Also the standard deviations of the compo- 
nents U u in the molecular coordinate system are eval- 
uated. 

6. Results on water molecules 

We have calculated the bond-length corrections for 9 
H20 and 2 D20 molecules in 5 structures. The com- 
pounds and the authors who carried out the structure 
determinations are given in Table 2. Also a serial 
number for identification is listed. For all molecules 
the atomic parameters were determined with neutron 
diffraction data. With the molecules 1 to 7 the compo- 
nents of the U tensors seemed to be most accurately 

determined. The standard deviations of the U" 's  are, 
in the mean over the molecules 1 to 7, about 0.00055 ,/t 2 
for the oxygen atoms and about 0.00135 A 2 for the hy- 
drogen atoms. For molecule 8 the respective values are 
0.0014 and 0.0017 A 2, for molecule 9 0-0009 and 0.0022 
A 2, and for the two D20 molecules 10 and 11 the stan- 
dard deviations of the UU's are about 0.0009 A 2 for all 
atoms. These values were computed by us from the stan- 
dard deviations of the fl~k as given by the authors listed 
in Table 2. All water molecules are linked to their 
neighbouring molecules by two hydrogen bonds 
formed through the H or D atoms of the water mol- 
ecules. The hydrogen bonds are weak. The O - H . . - O  
distances range from 2.68 to 2.96 /~ and the two 
O - H . . . C 1  distances with the molecules 2 and 4 are 
3.16 and 3.29/~. The molecules 1 and 3 form a very 
weak bifurcated hydrogen bond over the bond b of 
Tables 2 and 3, the uncorrected bond b is very short 
and the components U u of the hydrogen atom in these 
bonds have extremely large values. Hence one would 
assume that the COG model is not fully appropriate 
to the molecules 1 and 3. 

Table 2. Serial number, compound and reference 
pertaining to the 11 water molecules discussed in 

the text 

The letters a and b refer to the two bonds in the molecule 
respectively. 

la---4b MnCI2.4H20. E1 Saffar & Brown (1971). 
5a--7b Cu(NH4)2(SO4)2 6H20 (Tutton salt). Brown & 

Chidambaram (1969). 
8a--8b (COOK)2 H20, site symmetry 2. Sequiera, Sri- 

kanta & Chidambaram (1970). 
9a--9b e-(COOH)2 2H20. Sabine, Cox & Craven (1969). 

10a-1 lb ~-(COOD)2 2D20 and fl-(COOD)2 2D20. 
Coppens & Sabine (1969). 

In our calculations we have neglected the internal 
modes of the water molecules. This gives rise to errors 
which we want to discuss before we present our results. 
The two stretching modes practically do not contribute 
to the correction since the hydrogen atoms vibrate in 
the direction of the bonds and nearly in this direction 
respectively, and the amplitude of the oxygen atom is 
small, cf. Herzberg (1956, pp. 146, 171). A noticeable 
contribution, however, arises from the bending mode 
since in this mode the hydrogen atoms vibrate nearly 
perpendicular to the direction of the bonds. The mean- 
square amplitudes of the bending mode are very similar 
to those of the librations of the molecule about the z 
axis, which passes through the centre of gravity, be- 
cause the phases of the vibrations do not occur in the 
mean-square amplitudes. Hence it is to be expected 
that the libration tensor, which is calculated from the 
experimentally determined components U ik, contains 
the mean-square amplitudes of the bending mode to a 
large extent. Thus with a correction, which according 
to equation (5.13) employs the experimentally deter- 
mined components U lk, the internal modes should have 
largely been taken into account. That this is the case 
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will be shown by the following calculation: let A be the 
correction due to the bending mode,  B the correction 
due to the external modes of  the molecule, then the full 
correction is A + B .  Let the correction obtained with 
the aid of  equation (5.13) be C, when using the exper- 
imentally determined values of  the Uik's. Let that  par t  
of  the Uik's due to the bending mode which contributes 
to the correction via equation (5.13) be D. Then the 
total correction C is equal to B + D, whereas the correct 
value of  the total correction is B+A. In the following 
we show that  A - D  is so small that  it can well be neg- 
lected. First we calculate A:  we put  2~0= 110 ° and use 
v2= 1620 cm -1 for the bending mode, cf. N a k a m o t o  
(1963, p. 83). F rom Herzberg 's  (1956, p. 171) data  we 
deduce that  the hydrogen a tom vibrates with an angle 
of  83.8 ° with the direction of  the bond. For  the mean- 
square ampli tude of  this vibration we calculate 

u- 5 _  h mo = 0.00458 A z. 
8zt2v2mn "2(mo + 2mn) 

The component  perpendicular  to the bond is then 
0.00453 .~2. Similarly, we find 0.00003 A 2 for the nor- 
mal component  of  the oxygen atom. The correction due 
to the bending mode can now be obtained approx- 
imately by using the riding model since the oxygen 
atom is nearly at rest, or  by using the (diatomic) C O G  
model since the bending mode behaves similarly to a 
libration. We obtain corrections of  A =0.00237 A and 
A = 0.00269 A respectively. N o w  we calculate the cor- 
rection D:  in the molecular coordinate system only the 
components  U tl and U 22 are involved in the bending 
mode. The only impor tant  term in equation (5.13) is 

(U2, z+ U,-22 2U22)/2 sin 2 9 .  

With v2=1620 cm -a this term yields D=0 .00200  .A. 
Hence A - D  = 0.0007 A at the most which we can well 
neglect as stated above. 

We have calculated the corrections for the 11 water 
molecules with the riding model, with the C O G  model 
for r /= 1.6, 2.0, and 2.4, and for uncorrelated motion.  
The riding-model corrections and the corrections for 
uncorrelated motion will be used to judge the C O G  
corrections by comparison.  The corrections for the 
three values of  r / a re  given to obtain an impression of 
how much the values of  the C O G  correction scatter, 
since the value of  the lattice-dynamical parameter  W(r/) 
is not exactly known. The results of  our calculations 
are summarized in Table 3. The final column in Table 3 
gives the deviations from condition (1), U,tl= U~ 2, in 
terms of  one s tandard deviation of  U~ I or U] 1. 

For  all molecules the condition (1) is rather  well ful- 
filled, cf. Table 3. The larger deviations occur, as ex- 
pected, with the molecules 1 and 3 since these mol- 
ecules are bound in an asymmetric manner  through the 
hydrogen bonds to their neighbouring molecules. Also 
for the molecules 9, 10, and 11 the deviations from con- 
dition (1) are larger but an obvious structural effect 
cannot  be found to serve as an explanation. On an ab- 
solute scale the deviations from condition (1) still seem 
to be tolerable. For  the molecule 8 the condition (1) 
is exactly fulfilled because of the site symmetry 121. 
Hence, for this molecule, all values in Table 3 are the 
same for the bonds a and b. The conditions (2) and (3) 
were always found to be fulfilled. 

For  all molecules the correction for uncorrelated 
motion is larger than the C O G  correction, even when 
using the extreme value of  r/= 1.0. The mean value of  
the correction for uncorrelated motion over all mol- 
ecules is 0.1047 A with a mean deviation of  0.0180 A. 

Table 3. Bond lengths of 11 water molecules (.&), corrected w#h various models 

Deviation 
Uncorre- from 

Uncor- Riding Centre-of-gravity model lated condition 
rected model r/= 1.6 ,7 = 2.0 r/--- 2.4 motion (1) 

1 a 0.967 0.999 1.016 1.012 1.010 1.053 1.0 a 
b 0.944 1.021 1.040 1-036 1.034 1.081 

2 a 0.971 0.995 1.011 1.007 1.004 1.054 0.1 o" 
b 0-963 0-999 1.008 1.003 1.000 1.056 

3 a 0-955 0.986 1.013 1.005 1.000 1.067 1"6 a 
b 0.923 0.989 1.021 1.013 1-008 1.078 

4 a 0.941 0.973 1.000 0"993 0.988 1.054 0"3 o" 
b 0.953 0.978 1"004 0.997 0-993 1.054 

5 a 0"964 0.982 1.003 0-997 0.993 1.058 0"3 o" 
b 0.963 0"983 1"004 0.998 0.994 1.058 

6 a 0.977 0.993 1.012 1.007 1.004 1.059 0.4 a 
b 0.978 0"993 1"011 1.006 1.003 1-059 

7 a 0-980 1.002 1-018 1.014 1-011 1.055 0.1 a 
b 0-976 0.991 1"007 1.003 1"001 1"045 

8 a 0.963 0.959 0.996 0.984 0-978 1.061 0.0 o- 
b 0.963 0.959 0.996 0"984 0.978 1.061 

9 a 0.964 0"986 1.012 1.005 1-001 1-073 1"5 a 
b 0.956 0.985 1.015 1.007 1.003 1.066 

10 a 0"955 0"967 0.998 0.989 0.984 1.064 1-5 o" 
b 0"954 0.982 1"012 1"003 0.998 1"074 

11 a 0.944 0.942 0.997 0.980 0.970 1.089 2.0 a 
b 0'947 0"940 0"993 0'976 0"966 1-082 
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The corresponding mean value of the COG correction 
for r/=2.0 is 0.0420 A with a mean deviation of 0.0130 
/~. The difference of the mean values is 0.0627 A. For 

~7 1.0 the mean value of the COG correction is 0.0794 
r/= 1.0 closely corresponds to the state of uncorre- 

lated motion. This will be shown in the Appendix. 
That the COG mean value for r/= 1.0 is smaller than 
that for uncorrelated motion can be explained as fol- 
lows: with equations (5.8) and (5.9) we have referred 
the parameter W(r/) only to the librations about the x 
axis and the translations along the z axis of the molec- 
ular system, and with equations (5.8) and (5.10) the 
motions of the oxygen atom only are involved. Hence, 
observing (5.12), W occurs only in the first and last 
term of equation (5.13). The other terms in equation 
(5.13) are directly derived from the libration tensor and 
do not depend on W. Thus r/= 1.0 means uncorrelated 
motion only for the specified part of the vibrations of 
the molecule and in this sense r/= 1.0 affects the calcu- 
lated correction. The smaller value of the COG correc- 
tion for r/= 1.0 shows that that part of the vibrations 
of the molecule, for which the correction is not deter- 
mined with the aid of W(r/), cannot be interpreted as 
uncorrelated motion. Hence for this part of the vibra- 
tions of the molecule we have to assume a value of r/ 
which is larger than unity. This shows that, also for the 
water molecule, the librations are more strongly 
hindered than the translations. Thus we conclude that 
r/= 1-0 is not an appropriate assumption for the re- 
maining part of the vibrations of the molecule whose 
contribution to the correction can only be calculated 
with the aid of W(tl). 

For all molecules the corrections calculated with the 
riding model are smaller than the COG corrections, 
even for the extreme value of 1/= 3.0. Qualitatively this 
corresponds to our result for diatomic molecules; how- 
ever, the difference is larger for H20 molecules than 
for O H -  ions. In some cases the riding model breaks 
down completely: for the molecules 8 and 11 (D20) 
negative corrections are calculated, and for the bonds 
6a, 6b, 7b, 10a (D20) the corrections are positive but 
very small. In these cases a fairly large amplitude of the 
oxygen atom is found which begins to violate the as- 
sumptions inherent in the riding model. If one con- 
siders only those molecules for which the riding model 
seems to yield reasonable results (all molecules except 
6, 8, 11 and the bonds 7b and 10a) one obtains a mean 
value of the correction of 0.0330 A with a mean devia- 
tion of 0.0114 A. The mean value of the COG correc- 
tion (r/=2.0) for the same molecules and bonds is 
0.0500 A with a mean deviation of 0.0121 A. The COG 
mean value is larger by 0.0170 A. Hence the COG 
model yields corrections which are substantially larger 
than those of the riding model including those cases 
where the riding model does not obviously break down. 
However, the obvious failure of the riding model in 
some cases leads one to conclude that the other values 
of the corrections obtained with the riding model will 
also not be appropriate. 

To sum up: The COG correction is larger than the 
riding-model correction and smaller than the correction 
for uncorrelated motion. Since the physical assump- 
tions inherent in the COG model fit best to the actual 
vibrations of the water molecules, we conclude that the 
corrections which are calculated with the COG model 
are essentially correct. 

The molecules 2, 4, 5, 6 and 7 are very accurately 
determined, the condition (1) is very well fulfilled and 
the values of the corrected bond lengths do not scatter 
much. Thus these molecules offer the chance of deter- 
mining a likely value for the bond length &the  'weakly 
hydrogen-bonded symmetric water molecule'. With the 
COG model we find the following mean values and 
mean deviations for the 10 bonds: 

I/= 1"6 1-0078 + 0"0042 A 

r/= 2.0 1.0025 + 0.0050 A 

q=2-4 0-9991+0-0057 A .  

As the best value we consider the bond length of 
1.002 + 0.006 A. This value is larger by 0.045 A than 
the value of the bond length for the water molecule in 
the gaseous state, which is 0.957 A as given by Herzberg 
(1956, p. 489). We consider the difference of 0.045 A as 
physically significant. It is well known that the O - H  
bonds of water molecules are lengthened when the 
molecules form hydrogen bonds in the crystalline state. 
The experimental proofs as to the magnitude of this 
effect were not very precise however, because of the 
disturbances caused by the thermal motions. We be- 
lieve that the calculations made with the COG model 
uniquely establish the lengthening of the O-H bond in 
the solid state. 

Unfortunately, with the COG model there remains 
the uncertainty that the value of the parameter W(r/) is 
not exactly known. The figures in Table 3 show that 
the scattering of the bond lengths in the region r/= 1"6 
to I/= 2.4 is not equal for all molecules. The reason is 
that r/(W) is referred only to the component U~ 3. If this 
component is very large the COG correction will 
scatter most for a fixed region At/. This is the case with 
the molecules 8 and 11. In the region from 1/= 1.6 to 
r/=2.4 the scattering of the correction is 0.018 A for 
molecule 8, and 0.027 A for molecule 11. For all other 
molecules the scattering is smaller, the minimum value 
is 0.006 A (molecule 1), and the mean value over all 11 
molecules is 0-012/~. This scattering is not very large 
compared to the magnitude of the COG correction so 
that the COG correction remains meaningful in prin- 
ciple. So far we consider r/=2.0 as the most appro- 
priate value. With respect to the remaining uncertainty 
for the value of the lattice-dynamical parameter we 
invite other workers to report anisotropic temperature 
factors of asymmetric diatomic and linear triatomic 
molecules, which we may have overlooked or which 
were recently determined. With these data the statis- 
tics on the distribution of the r/(W) parameter can be 
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improved, cf. equations (3.8) and (4.6), and the COG 
correction can be more reliably performed. 

We acknowledge discussions with Professor W. H. 
Baur during his stay in Germany in 1972 and his var- 
ious suggestions concerning published structural data. 

A P P E N D I X  

Proofs that 11=1.0 corresponds to uncorrelated motion 

(a) The diatomic molecule 

The condition for uncorrelated motion is Urn=0. 
Ur~ is the coupling tensor for the atoms r and s, cf. 
SCHE (2.2) and SCHE (4.1). In the molecular coor- 
dinate system the weaker condition 

22 _ (A 1) w~1 + v ,~-0  
will hold, since 33 T33 U,~ = does not contribute to the 

~2 -- correction and since, with B,~-trace(A,s),  only the 
sum U~ + U,2~ must be zero and not the single compo- 
nents, cf. SCHE (3.3), SCHE (3.6) and SCHE (4.5). 
Using SCHE (4.4) and equations (2.2a) and (2.2b) we 
obtain in the molecular coordinate system 

Ur~n _- T n + ZrzsZ22 +(Zr + Zs)S12 , 

22_ T22 + ZrZ~L,,--(Zr + z,)S~ (A2) UI*$ -- 

The condition (A1) and S ~ = S  z now results in 

Z 11 -t- T 22 = -- zrzs(Ln + L22). (A3) 

zr and zs have opposite signs. Using equation (2.4) we 
obtain 

m,ms 
T n + T 22 = d2(Ln + L22 ) M2 (A4) 

as the condition of uncorrelated motion for the dia- 
tomic molecule. 

We now show that equation (A4) is satisfied if we 
put W = r / = l .  Observing equation (3.1) and putting 
W= 1, we obtain from equation (3.2) 

Or z2(Lx, + L22) Mz~ 
- -  _ _  , 

z, T n + T 22 I ' (A5) 

or 
1 

T n + T 22- (Ln + L22) (A6) 
M 

Since I=mrz~ +msZ z =d2m,m~/M the condition (A4) 
for uncorrelated motion is obviously fulfilled for 
W = I / =  1. 

(b) The water molecule 

W(r/) only refers to the librations about the x axis 
and to the translations along the z axis. Hence the 
general condition for uncorrelated motion, Usr = 0, re- 
duces in the molecular coordinate system to 

U~a~=0. (A7) 

Using SCHE (4.4) and equation (5.3c) we obtain for 
the specified modes of vibration 

U 33= T 33 +YsyrLn +(ys+y, )S~ .  (A8) 

Ys and Yt have opposite signs. Observing equation (5.1), 
we obtain from equations (A7) and (A8) 

[2m~mtLLl 2ms -mr  
T a3= dZt cos 2 f0 [ M2 + M (A9) 

J 

as the condition of uncorrelated motion for the speci- 
fied modes of vibration. 

We show that equation (A9) is fulfilled for W = r / =  1 
if we assume S a =0. Since S 3 is usually small and the 
difference 2ms-mr  tends to cancel the S 3 term, this 
assumption is not very stringent. Observing equation 
(5.8) and putting W= 1, we obtain from equation (5.9) 

O, y~LI~ My~ 
. . . .  (AI0) - -  - -  . . . . . . . . . . . .  , 

l"t T33 /x 
or 

T33 ix = ~ - L n .  (Al l )  

Since Ix = mty 2 + 2m~y 2 - 2 /M the con- - dst 2msmtCos 2 09 
dition (A9) for uncorrelated motion is fulfilled for 
W= r/= 1, if the Sx a term is neglected. 
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